Abstract

Electron transport in Ge at various temperatures down to 20 mK has been investigated using particle Monte Carlo simulation taking into account ionized impurity and inelastic phonon scattering. The simulations account for the essential features of electron transport at cryogenic temperature: Ohmic regime, anisotropy of the drift velocity relative to the direction of the electric field, as well as a negative differential mobility phenomenon along the ⟨111⟩ field orientation. Experimental data for the electron velocities are reproduced with a satisfactory accuracy. Examples of electron position in the real space during the simulations are given and evidence separated clouds of electrons propagating along different directions depending on the valley they belong to.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.