Abstract

ZnO nanoparticles (NPs) of 4–5 nm, widely adopted as an electron transport layer (ETL) in quantum dot light emitting diodes (QD-LEDs), were synthesized using the solution-precipitation process. It is notable that synthesized ZnO NPs are highly degenerate intrinsic semiconductors and their donor concentration can be increased up to ND = 6.9 × 1021 cm–3 by annealing at 140 °C in air. An optical bandgap increase of as large as 0.16–0.33 eV by degeneracy is explained well by the Burstein–Moss shift. In order to investigate the influence of intrinsic defects of ZnO NP ETLs on the performance of QD-LED devices without a combined annealing temperature between ZnO NP ETLs and the emissive QD layer, pre-annealed ZnO NPs at 60 °C, 90 °C, 140 °C, and 180 °C were spin-coated on the annealed QD layer without further post-annealing. As the annealing temperature increases from 60 °C to 180 °C, the defect density related to oxygen vacancy (VO) in ZnO NPs is reduced from 34.4% to 17.8%, whereas the defect density of interstitial Zn (Zni) is increased. Increased Zni reduces the width (W) of the depletion region from 0.21 to 0.12 nm and lowers the Schottky barrier (ФB) between ZnO NPs and the Al electrode from 1.19 to 0.98 eV. We reveal for the first time that carrier conduction between ZnO NP ETLs and the Al electrode is largely affected by the concentration of Zni above the conduction band minimum, and effectively described by space charge limited current and trap charge limited current models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call