Abstract

The diazotrophic cyanobacterium Trichodesmium is a major contributor to marine nitrogen fixation. We analyzed how light acclimation influences the photophysiological performance of Trichodesmium IMS101 during exponential growth in semi-continuous nitrogen fixing cultures under light levels of 70, 150, 250, and 400 μmol photons m(-2) s(-1), across diel cycles. There were close correlations between growth rate, trichome length, particulate organic carbon and nitrogen assimilation, and cellular absorbance, which all peaked at 150 μmol photons m(-2) s(-1). Growth rate was light saturated by about 100 μmol photons m(-2) s(-1) and was photoinhibited above 150 μmol photons m(-2) s(-1). In contrast, the light level (I k) to saturate PSII electron transport (e (-) PSII(-1) s(-1)) was much higher, in the range of 450-550 μmol photons m(-2) s(-1), and increased with growth light. Growth rate correlates with the absorption cross section as well as with absorbed photons per cell, but not to electron transport per PSII; this disparity suggests that numbers of PSII in a cell, along with the energy allocation between two photosystems and the state transition mechanism underlie the changes in growth rates. The rate of state transitions after a transfer to darkness increased with growth light, indicating faster respiratory input into the intersystem electron transport chain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call