Abstract
Single-walled carbon nanotubes have shown a wealth of quantum transport phenomena thus far. Defect-free, unperturbed single-walled carbon nanotubes with well behaved or tunable metal contacts are important for probing the intrinsic electrical properties of nanotubes. Meeting these conditions experimentally is non-trivial owing to numerous disorder and randomizing factors. Here we show that approximately 1-microm-long fully suspended single-walled carbon nanotubes grown in place between metal contacts afford devices with well defined characteristics over much wider energy ranges than nanotubes pinned on substrates. Various low-temperature transport regimes in true-metallic, small- and large-bandgap semiconducting nanotubes are observed, including quantum states shell-filling, -splitting and -crossing in magnetic fields owing to the Aharonov-Bohm effect. The clean transport data show a correlation between the contact junction resistance and the various transport regimes in single-walled-carbon-nanotube devices. Furthermore, we show that electrical transport data can be used to probe the band structures of nanotubes, including nonlinear band dispersion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.