Abstract

The eigenstates of an isolated nanostructure may get mixed by the coupling to external leads. This effect is the stronger, the smaller the level splitting on the dot and the larger the broadening induced by the coupling to the leads. We describe how to calculate the nondiagonal density matrix of the nanostructure efficiently in the cotunneling regime. As an example, we consider a system of two quantum dots in the Kondo regime, the two spins coupled by an antiferromagnetic exchange interaction and each dot tunnel coupled to two leads. Calculating the nonequilibrium density matrix and the corresponding current, we demonstrate the importance of the off-diagonal terms in the presence of an applied magnetic field and a finite bias voltage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call