Abstract

The authors report on electron transport characteristics for semiconducting, single wall, chiral carbon nanotubes. The Boltzmann transport equation is solved indirectly by the ensemble Monte Carlo method. The basis for the transport calculations is provided by electronic structure calculations in the framework of a simple tight binding model. Scattering mechanisms considered are due to the electron-phonon interactions involving longitudinal acoustic, longitudinal optic, and radial breathing mode phonons. Due to the smaller Brillouin zone, Umklapp scattering processes occur with much greater frequency in chiral carbon nanotubes than in achiral nanotubes. The transient and steady-state transport characteristics are found to be dependent on the chirality for semiconducting carbon nanotubes with similar diameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call