Abstract

Since the successful fabrication of semiconductor nanowires, various techniques have been developed to contact these nanowires and to probe their intrinsic electrical properties. Although many novel quasi one-dimensional materials such as Pb(1 - x)Mn(x)Se nanoarrays were recently produced, their intrinsic electron transport properties have not been extensively studied so far. In this work, we demonstrate that an ordinary source-drain configuration of field-effect transistors or the two-probe measurement can be applied to the exploration of the intrinsic properties of nanowires. This two-probe measurement approach also works on highly resistive nanowires without an Ohmic contact issue. By using this method, electron transport behavior, resistivity, and carrier concentrations of ZnO, InP, GaP, and Pb(1 - x)Mn(x)Se semiconductor nanowires have been investigated. Due to the tiny cross-section and few conducting channels, a nanomaterial usually reveals an ultra high resistance. This technique demonstrates a two-probe characterization of nanostructures, paving the simplest way toward electrical characterizations of all high-resistance nanomaterials such as deoxyribonucleic acid (DNA), molecules and organics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.