Abstract

Understanding electron drift and diffusion in gases and gas mixtures is a topic of central importance for the development of modern particle detection instrumentation. The industry-standard MagBoltz code has become an invaluable tool during its 20 years of development, providing capability to solve for electron transport (‘swarm’) properties based on a growing encyclopedia of built-in collision cross sections. We have made a refactorization of this code from FORTRAN into Cython, and studied a range of gas mixtures of interest in high energy and nuclear physics. The results from the new open source PyBoltz package match the outputs from the original MagBoltz code, with comparable simulation speed. An extension to the capabilities of the original code is demonstrated, in implementation of a new Modified Effective Range Theory interface. We hope that the versatility afforded by the new Python code-base will encourage continued use and development of the MagBoltz tools by the particle physics community.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.