Abstract

We report an electron transport study of lithographically fabricated graphene nanoribbons (GNRs) of various widths and lengths. At the charge neutrality point, a length-independent transport gap forms whose size is inversely proportional to the GNR width. In this gap, electrons are localized, and charge transport exhibits a transition between thermally activated behavior at higher temperatures and variable range hopping at lower temperatures. By varying the geometric capacitance, we find that charging effects constitute a significant portion of the activation energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call