Abstract

Based on the solution of a linearized kinetic equation for electrons with a Landau collision integral, we develop a theory of electron transport for small perturbations in a completely ionized plasma with an arbitrary ionic charge that is free from any constraints on the characteristic perturbation time and length scales. We calculate the potential and vortex electron fluxes for an arbitrary electron collision frequency that allow the spatial and temporal nonlocal transport to be described. We also derive expressions for the longitudinal and transverse electron permittivities of a collisional plasma with an arbitrary ionic charge that are suitable for describing the plasma response to small perturbations with an arbitrary frequency and wave vector. Using the transverse permittivity, which allows the absorption of an electromagnetic wave to be described in the entire range of plasma parameters (from the strongly collisional to the collisionless one), as an example, we provide a detailed comparison with previously known models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call