Abstract
AbstractThe effects of a Coulomb-like potential in the Schottky barrier existing between a material-diamond interface is analyzed. The inclusion is intended to mimic the effects of an ionized trap within the barrier, and therefore to account for charge injection into the conduction band of diamond via a Poole-Frenkel transport mechanism. The present treatment is to provide a qualitative account of the increase in current density near the inclusion, which can be substantial. The model is first reduced to an analytically tractable one-dimensional tunneling problem addressable by an Airy Function approach in order to investigate the nature of the effect. A more comprehensive numerical approach is then applied. Finally, statistical arguments are used to estimate emission site densities using the results of the aforementioned analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.