Abstract

To fully account for electron-vibrational coupling and vibrational relaxation in the course of electron motion through a molecular wire a density operator approach is utilized. If combined with a particular projection operator technique a generalized master equation can be derived which governs the populations of the electronic wire states. The respective memory kernels are determined beyond any perturbation theory with respect to the electron-vibrational coupling and can be classified via so-called Liouville space pathways. An ordering of the different contributions to the current-voltage characteristics becomes possible by introducing an electron transmission coefficient which describes ballistic as well as inelastic electron transport through the wire. The general derivations are illustrated by numerical calculations which demonstrate the drastic influence of the electron-vibrational coupling on the wire transmission coefficient as well as on the current-voltage characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.