Abstract

The ability of high oxidation potential zinc porphyrins acting as electron donors in photoinduced electron-transfer reactions is investigated. Donor–acceptor dyads were assembled via metal–ligand axial coordination of either pyridine or phenylimidazole functionalized fulleropyrrolidine with zinc porphyrin functionalized with different numbers of halogen substituents on the meso-aryl rings. Optical absorption studies on complex formation revealed relatively higher binding constants. Efficient quenching of fluorescence was observed for the newly assembled dyads, revealing their ability to undergo photoinduced events. Differential pulse voltammetry studies were performed to understand the structure–activity relationships with respect to the electron deficient nature of the porphyrins and to utilize these data to estimate free-energy change for charge-separation and charge-recombination processes. The absolute value of free-energy change for charge separation was found to be lower for halogenated porphyrins with higher oxidation potentials expecting to form high-energy radical ion pairs. Using femtosecond transient techniques, evidence for charge separation and kinetics of charge separation and recombination were obtained in toluene. The kinetic data obtained by analyzing the time profiles of the radical ions revealed occurrence of ultrafast charge separation and relatively slower charge recombination processes in the dyads. Notably, electron-transfer rates did not exactly follow the trends predicted based on Marcus theory of electron transfer. Donor–acceptor geometry and populating the triplet excited states of the sensitizers during charge recombination are considered to be possible reasons for this behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call