Abstract
Reduction of turnip ferricytochrome f by flavin semiquinones and oxidation of this ferrocytochrome f by French bean cupriplastocyanin are studied by laser flash photolysis over a wide range of ionic strengths. Second-order rate constants (+/- 15%) at extreme values of ionic strength, all at pH 7.0 and 22 degrees C, are as follows: with FMN semiquinone at 1.00 and 0.0040 M, 5.0 x 10(7) and 3.9 x 10(8) M-1 s-1; with riboflavin semiquinone at 1.00 and 0.0040 m, 1.7 x 10(8) and 1.9 x 10(8) M-1 s-1; with lumiflavin semiquinone at 1.00 and 0.0045 M, 1.8 x 10(8) and 4.5 x 10(8) M-1 s-1; with cupriplastocyanin at 1.00 and 0.100 M, 1.4 x 10(6) and 2.0 x 10(8) M-1 s-1. These reactions of cytochrome f are governed by the local positive charge of the interaction domain (the exposed heme edge), not by the overall negative charge of the protein. Lumiflavin semiquinone behaves as if it carried a small negative charge, probably because partial localization of the odd electron gives this electroneutral molecule some polarity; local charge seems to be more important than overall charge even for relatively small redox agents. The dependence of the rate constants on ionic strength was fitted to the equation of Watkins; this model recognizes the importance of local charges of the domains through which redox partners interact. There is kinetic evidence that a noncovalent complex between cytochrome f and plastocyanin exists at low ionic strength.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.