Abstract

Aerobic stopped-flow experiments have confirmed that component C is the methane monooxygenase component responsible for interaction with NADH. Reduction of component C by NADH is not the rate-limiting step for component C in the methane monooxygenase reaction. Removal and reconstitution of the redox centres of component C suggest a correlation between the presence of the FAD and Fe2S2 redox centres and NADH: acceptor reductase activity and methane monooxygenase activity respectively, consistent with the order of electron flow: NADH----FAD----Fe2S2----component A. This order suggests that component C functions as a 2e-1/1e-1 transformase, splitting electron pairs from NADH for transfer to component A via the one-electron-carrying Fe2S2 centre. Electron transfer has been demonstrated between the reductase component, component C and the oxygenase component, component A, of the methane monooxygenase complex from Methylococcus capsulatus (Bath) by three separate methods. This intermolecular electron transfer step is not rate-determining for the methane monooxygenase reaction. Intermolecular electron transfer was independent of component B, the third component of the methane monooxygenase. Component B is required to switch the oxidase activity of component A to methane mono-oxygenase activity, suggesting that the role of component B is to couple substrate oxidation to electron transfer, via the methane monooxygenase components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.