Abstract

In this work, the adsorption of tyrosinase on ZnO nanorods and its electrocatalytic behaviors were investigated. The mushroom tyrosinase with low isoelectric point was expected to adhere on the positively charged surface of ZnO nanorods by electrostatic attraction in a neutral solution. Scanning electron microscope images and spectroscopic analysis demonstrated the adsorption of tyrosinase on ZnO nanorods and the adsorbed tyrosinase remain its bioactivity to a large extent. In the presence of tyrosinase, a roughly and cyathiform of nanosized ZnO films was obtained. This open, three-dimensioned ramiform structure made the Fe ( CN ) 6 3 - / 4 - move through and exchange the electron with GCE more easily, and thus accelerating the electron transfer between electroactive Fe ( CN ) 6 3 - / 4 - and GCE. The adsorbed tyrosinase could catalyze the oxidation of phenol and catechol. The linear concentration ranges were from 0.02 to 0.1 mM and 0.01 to 0.4 mM, for phenol and catechol, respectively. The apparent Michaelis-menten constant ( K M app ) , a reflection of the enzymatic affinity, was 0.24 mM for phenol and 1.75 mM for catechol, which suggests a large affinity to phenolic compound. The proposed methods presented a way for further studies of the immobilization and electrochemistry of proteins on nanostructured materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.