Abstract

The photoredox reaction of ferrioxalate after 266/267 nm excitation in the charge transfer band has been studied by means of ultrafast extended X-ray absorption fine structure (EXAFS) analysis, optical transient spectroscopy, and quantum chemistry calculations. The Fe-O bond length changes combined with the transient spectra and kinetics have been measured and in combination with ultrahigh frequency density functional theory (UHF/DFT) calculations are used to determine the photochemical mechanism for the Fe(III) to Fe(II) redox reaction. The present data and the results obtained with 266/267 nm excitations strongly suggest that the primary reaction is the dissociation of the Fe-O bond before intramolecular electron transfer occurs. Low quantum yield electron photodetachment from ferrioxalate has also been observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.