Abstract

An important open question on the electrochemistry of single-walled carbon nanotube (SWNT) electrodes concerns the sites at which electron transfer (ET) occurs. This issue is addressed herein for the case of a simple outer sphere redox couple, (ferrocenymethyl)trimethylammonium (FcTMA+). Using relatively sparse networks (<1% surface coverage) of electrically connected SWNTs, coupled to a scanning electrochemical microscopy (SECM) substrate generation−tip collection setup, we show that high rates of mass transport can be generated to SWNTs, allowing kinetic effects to be observed in the voltammetric waveshape. By developing a numerical model that faithfully represents all aspects of the experimental geometry, highly accurate kinetic data can be obtained. Assuming that all SWNTs are active, a minimum average ET rate constant k0SWNT > 1.0 ± 0.6 cm s−1 is assigned, which is of similar size to other electrode materials and suggests that the sidewall of SWNTs has considerable ET activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.