Abstract

The abundant sesquiterpene β-caryophyllene can be epoxidized by molecular oxygen in the absence of any catalyst. In polar aprotic solvents, the reaction proceeds smoothly with epoxide selectivities exceeding 70 %. A mechanistic study has been performed and the possible involvement of free radical, spin inversion, and electron transfer mechanisms is evaluated using experimental and computational methods. The experimental data-including a detailed reaction product analysis, studies on reaction parameters, solvent effects, additives and an electrochemical investigation-all support that the spontaneous epoxidation of β-caryophyllene constitutes a rare case of unsensitized electron transfer from an olefin to triplet oxygen under mild conditions (80 °C, 1 bar O2 ). As initiation of the oxygenation reaction, the formation of a caryophyllene-derived radical cation via electron transfer is proposed. This radical cation reacts with triplet oxygen to a dioxetane via a chain mechanism with chain lengths exceeding 100 under optimized conditions. The dioxetane then acts as an in situ-formed epoxidizing agent. Under nitrogen atmosphere, the presence of a one-electron acceptor leads to the selective isomerization of β-caryophyllene to isocaryophyllene. Observations indicate that this isomerization reaction is a novel and elegant synthetic pathway to isocaryophyllene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call