Abstract
We develop nonorthogonal projectors, called Löwdin projectors, to construct an effective donor-acceptor system composed of localized donor (D) and acceptor (A) states of a long-distance electron transfer problem. When these states have a nonvanishing overlap with the bridge states these projectors are non-Hermitian and there are various possible effective two-level systems that can be built. We show how these can be constructed directly from the Schrödinger or Dyson equation projected onto the D-A subspace of the Hilbert space and explore these equations to determine the connection between Hamiltonian and Green function partitioning. We illustrate the use of these effective two-level systems in estimating the electron transfer rate in the context of a simple electron transfer model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.