Abstract

Contact electrification (CE) (or triboelectrification) is a well-known phenomenon, and the identity of the charge carriers and their transfer mechanism have been discussed for decades. Recently, the species of transferred charges in the CE between a metal and a ceramic was revealed as electron transfer and its subsequent release is dominated by the thermionic emission process. Here, the release of CE-induced electrostatic charges on a dielectric surface under photon excitation is studied by varying the light intensity and wavelength, but under no significant raise in temperature. The results suggest that there exists a threshold photon energy for releasing the triboelectric charges from the surface, which is 4.1 eV (light wavelength at 300 nm) for SiO2 and 3.4 eV (light wavelength at 360 nm) for PVC; photons with energy smaller than this cannot effectively excite the surface electrostatic charges. This process is attributed to the photoelectron emission of the charges trapped in the surface states of the dielectric material. Further, a photoelectron emission model is proposed to describe light-induced charge decay on a dielectric surface. The findings provide an additional strong evidence about the electron transfer process in the CE between metals and dielectrics as well as polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.