Abstract

The crystals of holoenzyme from native and cross-linked alcohol dehydrogenase exhibit electron transfer from NADH to phenazinium methosulfate (PMS), and then to the tetrazolium salt sodium 3,3′-{1-[(phenylamino)carbonyl]-3,4-tetrazolium}-bis(4-methoxy-6-nitro)benzenesulfonate (XXT). The slow dissociation of the cofactor and/or the conformational change associated can now be bypassed. The reduction product, formazan, did not diffuse out of the crystals in buffer and the crystals turned colored. In the presence of dimethyl sulfoxide or dimethoxyethane, the formazan diffused out to the solution. The reaction rates were found to be, respectively, 18% and 15% of the redox reaction rate of ethanol with cinnamaldehyde, close to the activity determined for the enzyme in solution in the presence of dimethoxyethane. The use of system PMS-tetrazolium salt is a useful tool to visualize the activity of dehydrogenases and other electron transferring systems in the crystalline state. The adsorption of formazan by the alcohol dehydrogenase crystals occurs in solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.