Abstract

We previously reported that graphene oxide could enhance nuclease activity of copper complex containing aromatic ligands, thus exhibit the potential for applications in anticancer therapy. However, the functional mechanism of graphene oxide is not well understood. In this work, using graphene quantum dots (GQDs), which have smaller lateral size, better biocompatibility, and a conjugate state higher than that of graphene oxide, we investigated systematically the mechanism of GQDs in enhancing nuclease activity of copper complexes. Through a variety of spectroscopic methods, we found that GQDs promote the reduction of copper ions and accelerate their reaction with O2, forming superoxide anions and copper-centered radicals. These active species then oxidize DNA molecules. The improvement in the reduction of copper complexes can be attributed to the coordination of the GQDs to the copper center of the complex, leading to an efficient electron-transfer from the electron-rich GQDs to the copper complexes. The f...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.