Abstract
Parvalbumin, aldolase and liver alcohol dehydrogenase (ADH), proteins exhibiting long-lived phosphorescence lifetimes at room temperature, were examined for their reactivity with ferricytochrome c (cytochrome c Fe 3) as an external electron acceptor. Illumination of a reaction mixture containing protein and cytochrome c in the absence of oxygen brought about reduction of cytochrome c in relation to the duration of light. The largest portion of reduced cytochrome c was found with a sample containing ADH, where a 50% reduction of cytochrome c was reached after 5 min of illumination with a xenon lamp. Parvalbumin and aldolase were about half as effective under the same conditions. Several lines of evidence support the idea that the reaction of cytochrome c occurred by a long-range electron transfer from the excited triplet state of tryptophan. First, cytochrome c quenches the tryptophan phosphorescence and with parvalbumin, its bimolecular quenching rate constant, k q, was 2.9 · 10 6 M −1 s −1. Second, when the illuminated reaction mixture was supplied with 0.2 mM to 1 mM nitrite, a concentration range of nitrite which quenches the tryptophan phosphorescence but not the fluorescence, the amount of reduced cytochrome c on illumination markedly decreased. Finally, for all illuminated protein samples, the extent of cytochrome c reduction occurred parallel to a decrease in tryptophan content as judged from a decrease in fluorescence intensity and/or a decrease in tryptophan absorption at 280 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.