Abstract

The time course of P700(+) reduction and cytochrome f oxidation following a single-turnover flash excitation of photosystem I was measured under various conditions in different strains of green algae. P700(+) was reduced with a half-time of 4 μs. The rate of cytochrome f oxidation was found to depend widely on physiological factors. Reversible transitions are described from a 'slow-oxidation' state (t 1/2=500 μs) to a 'fast-oxidation' state (t 1/2=80 μs). The addition of ionophore strongly favours and stabilizes the 'fast-oxidation' state. We suggest that these transitions reflect either reversible association between the cytochrome bf complex and the reaction center of photosystem I or changes in the mobility of oxidized plastocyanin. The transitions might be under the control of the membrane potential or the intracellular ATP content. The relation of these reversible transitions with the 'light state' transitions, and their possible involvement in a switch from linear to cyclic electron transfer, are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.