Abstract

The long-term stability of dye-sensitized solar cells (DSSCs) is determined to a large extent by the photodegradation of their sensitizers. Understanding the mechanism of light-induced decomposition of dyes sensitizing a mesoporous oxide matrix may therefore contribute to solutions to increase the life span of DSSCs. Here, we investigate, using ultrafast terahertz photoconductivity measurements, the evolution of interfacial electron-transfer (ET) dynamics in Ru(4,4'-dicarboxylic acid-2,2'-bipyridine)2(NCS)2 (N3) dye-sensitized mesoporous TiO2 electrodes upon dye photodegradation. Under inert environment, interfacial ET dynamics do not change over time, indicating that the dye is stable and photodegradation is absent; the associated ET dynamics are characterized by a sub-100 fs rise of the photoconductivity, followed by long-lived (≫1 ns) electrons in the oxide electrode. When the N3-TiO2 sample is exposed to air under identical illumination conditions, dye photodegradation is evident from the disappearance of the optical absorption associated with the dye. Remarkably, approximately half of the sub-100 fs ET is observed to still occur but is followed by very rapid (∼10 ps) electron-hole recombination. Laser desorption/ionization mass spectrometry, attenuated total reflection-Fourier transform infrared, and terahertz photoconductivity analyses reveal that the photodegraded ET signal originates from the N3 dye photodegradation product as bi-isonicotinic acid (4,4'-dicarboxylic acid-2,2'-bipyridine), which remains bonded to the TiO2 surface via either bidentate chelation or bridging-type geometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.