Abstract
Human electron transfer flavoprotein (ETF) is a soluble mitochondrial heterodimeric flavoprotein that links fatty acid β-oxidation to the main respiratory chain. The crystal structure of human ETF bound to medium chain acyl-CoA dehydrogenase indicates that the flavin adenine dinucleotide (FAD) domain (αII) is mobile, which permits more rapid electron transfer with donors and acceptors by providing closer access to the flavin and allows ETF to accept electrons from at least 10 different flavoprotein dehydrogenases. Sequence homology is high and low-angle X-ray scattering is identical for Paracoccus denitrificans (P. denitrificans) and human ETF. To characterize the orientations of the αII domain of P. denitrificans ETF, distances between enzymatically reduced FAD and spin labels in the three structural domains were measured by double electron-electron resonance (DEER) at X- and Q-bands. An FAD to spin label distance of 2.8 ± 0.15 nm for the label in the FAD-containing αII domain (A210C) agreed with estimates from the crystal structure (3.0 nm), molecular dynamics simulations (2.7 nm), and rotamer library analysis (2.8 nm). Distances between the reduced FAD and labels in αI (A43C) were between 4.0 and 4.5 ± 0.35 nm and for βIII (A111C) the distance was 4.3 ± 0.15 nm. These values were intermediate between estimates from the crystal structure of P. denitrificans ETF and a homology model based on substrate-bound human ETF. These distances suggest that the αII domain adopts orientations in solution that are intermediate between those which are observed in the crystal structures of free ETF (closed) and ETF bound to a dehydrogenase (open).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.