Abstract

In this study, manganese oxide (MnO) dispersed on CN (Mn-nCN) was fabricated as a catalyst in heterogeneous catalytic ozonation (HCO), achieving excellent catalytic performance on refractory organic pollutant degradation via the synergistic effects between MnO and CN. The study demonstrated that the C–N−Mn and C−O−Mn bonds constructed in the catalyst linking MnO and CN created the synergistic effects which could overcome typical problems, such as metal leaching etc. The C−N−Mn and C−O−Mn bonds could promote electron transfer from cation-π reactions to form electron-rich Mn(II) sites and electron-poor CN sites. The electron-rich Mn(II) sites as active sites supplied electrons to ozone which then further evolved into reactive oxygen species (ROS). The electron-poor CN sites captured electrons from the pollutant intermediate radicals to electron-rich Mn(II) sites via cation-π reactions with the help of C−N−Mn and C−O−Mn bonds, which promote the redox reactions of Mn. The surface hydroxyl groups also participated in ozone decomposition and ROS production. Additionally, •OH was the dominant ROS of the Mn-nCN HCO processes. This study presents the excellent HCO performance of Mn-nCN, as well as provides views on the electron transfer route between the catalyst, pollutant and ozone, which is crucial for the design of the catalyst.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.