Abstract
No single linear free energy relationship (LFER) exists that can predict reduction rate constants of all munition constituents (MCs). To address this knowledge gap, we measured the reduction rates of MCs and their surrogates including nitroaromatics [NACs; 2,4,6-trinitrotoluene (TNT), 2,4-dinitroanisole (DNAN), 2-amino-4,6-dinitrotoluene (2-A-DNT), 4-amino-2,6-dinitrotoluene (4-A-DNT), and 2,4-dinitrotoluene (DNT)], nitramines [hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and nitroguanidine (NQ)], and azoles [3-nitro-1,2,4-triazol-5-one (NTO) and 3,4-dinitropyrazole (DNP)] by three dithionite-reduced quinones (lawsone, AQDS, and AQS). All MCs/NACs were reduced by the hydroquinones except NQ. Hydroquinone and MC speciations were varied by controlling pH, permitting the application of a speciation model to determine second-order rate constants (k) from observed pseudo-first-order rate constants. The intrinsic reactivity of MCs (oxidants) decreased upon deprotonation, while the opposite was true for hydroquinones (reductants). The rate constants spanned ∼6 orders of magnitude in the order NTO ≈ TNT > DNP > DNT ≈ DNAN ≈ 2-A-DNT > DNP- > 4-A-DNT > NTO- > RDX. LFERs developed using density functional theory-calculated electron transfer and hydrogen atom transfer energies and reported one-electron reduction potentials successfully predicted k, suggesting that these structurally diverse MCs/NACs are all reduced by hydroquinones through the same mechanism and rate-limiting step. These results increase the applicability of LFER models for predicting the fate and half-lives of MCs and related nitro compounds in reducing environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Environmental science & technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.