Abstract

To understand the influence of the molecular dipole moment on the electron transfer (ET) dynamics across the molecular framework, two series of differently fluorinated, benzonitrile-based self-assembled monolayers (SAMs) bound to Au(111) by either thiolate or selenolate anchoring groups were investigated. Within each series, the molecular structures were the same with the exception of the positions of two fluorine atoms affecting the dipole moment of the SAM-forming molecules. The SAMs exhibited a homogeneous anchoring to the substrate, nearly upright molecular orientations, and the outer interface comprised of the terminal nitrile groups. The ET dynamics was studied by resonant Auger electron spectroscopy in the framework of the core-hole clock method. Resonance excitation of the nitrile group unequivocally ensured an ET pathway from the tail group to the substrate. As only one of the π* orbitals of this group is hybridized with the π* system of the adjacent phenyl ring, two different ET times could be determined depending on the primary excited orbital being either localized at the nitrile group or delocalized over the entire benzonitrile moiety. The latter pathway turned out to be much more efficient, with the characteristic ET times being a factor 2.5-3 shorter than those for the localized orbital. The dynamic ET properties of the analogous thiolate- and selenolate-based adsorbates were found to be nearly identical. Finally and most importantly, these properties were found to be unaffected by the different patterns of the fluorine substitution used in the present study, thus showing no influence of the molecular dipole moment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call