Abstract

We report the synthesis and characterization of RuC7, a complex in which a heme is covalently attached to a [Ru(bpy)(3)](2+) complex through a -(CH(2))(7)- linker. Insertion of RuC7 into horse heart apomyoglobin gives RuC7Mb, a Ru(heme)-protein conjugate in which [Ru(bpy)(3)](2+) emission is highly quenched. The rate of photoinduced electron transfer (ET) from the resting (Ru(2+)/Fe(3+)) to the transient (Ru(3+)/Fe(2+)) state of RuC7Mb is >10(8) s(-1); the back ET rate (to regenerate Ru(2+)/Fe(3+)) is 1.4 x 10(7) s(-1). Irreversible oxidative quenching by [Co(NH(3))(5)Cl](2+) generates Ru(3+)/Fe(3+): the Ru(3+) complex then oxidizes the porphyrin to a cation radical (P*+); in a subsequent step, P*+ oxidizes both Fe(3+) (to give Fe(IV)=O) and an amino acid residue. The rate of intramolecular reduction of P*+ is 9.8 x 10(3) s(-1); the rate of ferryl formation is 2.9 x 10(3) s(-1). Strong EPR signals attributable to tyrosine and tryptophan radicals were recorded after RuC7MbM(3+) (M = Fe, Mn) was flash-quenched/frozen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.