Abstract

Processes of photo-induced electron transfer from a bivalent acceptor lanthanide (Eu, Sm, and Yb) onto a trivalent donor lanthanide (Nd, Sm, Dy, Tm, and Yb) and the inverse thermally activated transfer are studied in barium fluoride crystals. At room temperature, photoinduced electron transfer is accompanied by oncoming displacement of the interstitial charge-compensating fluoride ion. On photoquenching at low temperatures, a bivalent donor lanthanide remains next to the interstitial fluoride ion, which causes a redshift of its 4f–5d absorption bands. The shift increases as the lanthanide size decreases (as in the series Nd, Sm, Dy, Tm, and Yb). A detailed analysis of the mechanisms of photo and thermal electron transfers between the different lanthanide centers in BaF2 crystals is provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.