Abstract

Generation of reactive oxygen species (ROS) are possibly induced by the crosstalk between mitochondria and endoplasmic reticula, which is physiologically important in apoptosis. Cytochrome c (Cyt c) is believed to play a crucial role in such signaling pathway by interrupting the coupling within microsomal monooxygenase (MMO). In this study, the correlation of ROS production with the electron transfer between Cyt c and the MMO system is investigated by resonance Raman (RR) spectroscopy. Binding of Cyt c to MMO is found to induce the production of ROS, which is quantitatively determined by the in-situ RR spectroscopy reflecting the interactions of Cyt c with generated ROS. The amount of ROS that is produced from isolated endoplasmic reticulum depends on the redox state of the Cyt c, indicating the important role of oxidized Cyt c in accelerating apoptosis. The role of electron transfer from MMO to Cyt c in the apoptotic mitochondria-endoplasmic reticulum pathway is accordingly proposed. This study is of significance for a deeper understanding of how Cyt c regulates apoptotic pathways through the endoplasmic reticulum, and thus may provide a rational basis for the design of antitumor drugs for cancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call