Abstract
Electron transfer (ET) at molecule-metal or molecule-semiconductor interfaces is a fundamental reaction that underlies all electrochemical processes and substrate-mediated surface photochemistry. In this study, we show that ET rates near a metal surface can be significantly manipulated by periodic driving (e.g., Floquet engineering). We employ the Floquet surface hopping and Floquet electronic friction algorithms developed previously to calculate the ET rates near the metal surface as a function of driving amplitudes and driving frequencies. We find that ET rates have a turnover effect when the driving frequencies increase. A Floquet Marcus theory is further formulated to analyze such a turnover effect. We then benchmark the Floquet Marcus theory against Floquet surface hopping and Floquet electronic friction methods, indicating that the Floquet Marcus theory works in the strong nonadiabatic regimes but fails in the weak nonadiabatic regimes. We hope these theoretical tools will be useful to study ET rates in the plasmonic cavity and plasmon-assisted photocatalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.