Abstract
Molecules capable of accepting and storing multiple electrons are crucial components of artificial photosynthetic systems designed to drive catalysts, such as those used to reduce protons to hydrogen. ExBox(4+), a boxlike cyclophane comprising two π-electron-poor extended viologen units tethered at both ends by two p-xylylene linkers, has been shown previously to accept an electron through space from a photoexcited guest. Herein is an investigation of an alternate, through-bond intramolecular electron-transfer pathway involving ExBox(4+) using a combination of transient absorption and femtosecond stimulated Raman spectroscopy (FSRS). Upon photoexcitation of ExBox(4+), an electron is transferred from one of the p-xylylene linkers to one of the extended viologen units in ca. 240 ps and recombines in ca. 4 ns. A crystal structure of the doubly reduced species ExBox(2+) was obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.