Abstract
Lipid droplets (LD) are dynamically-regulated organelles that originate from the endoplasmic reticulum (ER), and function in the storage, trafficking and metabolism of neutral lipids. In mammary epithelial cells (MEC) of lactating animals, intact LD are secreted intact into milk to form milk lipids by a novel apocrine mechanism. The secretion of intact LD and the relatively large amounts of lipid secreted by lactating MEC increase demands on the cellular processes responsible for lipid synthesis and LD formation. As yet these processes are poorly defined due to limited understanding of LD-ER interactions. To overcome these limitations, we used rapid-freezing and freeze-substitution methods in conjunction with 3D electron tomography and high resolution immunolocalization to define interactions between LD with ER in MEC of pregnant and lactating rats. Using these approaches, we identified distinct ER domains that contribute to lipid droplet formation and stabilization and which possess unique features previously unrecognized or not fully appreciated. Our results show nascent lipid droplets within the ER lumen and the association of both forming and mature droplets with structurally unique regions of ER cisternae, characterized by the presence of perilipin-2, a protein implicated in lipid droplet formation, and enzymes involved in lipid synthesis. These data demonstrate that milk lipids originate from LD-ER domains with novel structural features and suggest a mechanism for initial droplet formation in the ER lumen and subsequent maturation of the droplets in association with ER cisternae.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.