Abstract

Rubber-filler composites are a key component in the manufacture of tyres. The filler provides mechanical reinforcement and additional wear resistance to the rubber, but it in turn introduces non-linear mechanical behaviour to the material which most likely arises from interactions between the filler particles, mediated by the rubber matrix. While various studies have been made on the bulk mechanical properties and of the filler network structure (both imaging and by simulations), there presently does not exist any work directly linking filler particle spacing and mechanical properties. Here we show that using STEM tomography, aided by a machine learning image analysis procedure, to measure silica particle spacings provides a direct link between the inter-particle spacing and the reduction in shear modulus as a function of strain (the Payne effect), measured using dynamic mechanical analysis. Simulations of filler network formation using attractive, repulsive and non-interacting potentials were processed using the same method and compared with the experimental data, with the net result being that an attractive inter-particle potential is the most accurate way of modelling styrene-butadiene rubber-silica composite formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.