Abstract

Structural analyses of organelles and localization of proteins in their confines are essential toinvestigate inner workings of eukaryotic cells. Electron tomography (ET) is a three-dimensional electron microscopy method with which we can extract sliced views of organelles from any direction and quantify their structural parameters at nanometer-level resolution. This advanced electron microscopy tool is suited for characterization of convoluted membrane compartments and of cellular constituents of dimensions smaller than 100nm. ET studies of plant cells fixed by rapid freezing have expanded our understanding of the biogenesis and functions of plant organelles. Here we describe how the molecular imaging capacity of correlative light and electron microscopy can be integrated with ET in studies of plant organelles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.