Abstract

Recent hybrid MHD‐kinetic electron simulations of Field Line Resonances have illustrated that the acceleration of electrons to carry the field aligned current can dissipate a significant amount of wave energy over only half an Alfvén cycle. This was done in the limit of colder electron temperatures, and in the present study we extend this to consider temperatures of up to several hundred eV. It is found that mirror force effects enhance both the parallel electric field needed to support the given current as well as the dissipation associated with the acceleration of the electrons to carry it. The current‐voltage (C‐V) relation appears consistent with the Knight relation for a portion of the evolution but then saturates with the decline of electrons within the loss cone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.