Abstract

The use of single wall carbon nanotubes (SWCNTs) as conduits for transporting electrons in a photoelectrochemical solar cell and electronic devices requires better understanding of their electron-accepting properties. When in contact with photoirradiated TiO(2) nanoparticles, SWCNTs accept and store electrons. The Fermi level equilibration with photoirradiated TiO(2) particles indicates storage of up to 1 electron per 32 carbon atoms in the SWCNT. The stored electrons are readily discharged on demand upon addition of electron acceptors such as thiazine and oxazine dyes (reduction potential less negative than that of the SWCNT conduction band) to the TiO(2)-SWCNT suspension. The stepwise electron transfer from photoirradiated TiO(2) nanoparticles --> SWCNT --> redox couple has enabled us to probe the electron equilibration process and determine the apparent Fermi level of the TiO(2)-SWCNT system. A positive shift in apparent Fermi level (20-30 mV) indicates the ability of SWCNTs to undergo charge equilibration with photoirradiated TiO(2) particles. The dependence of discharge capacity on the reduction potential of the dye redox couple is compared for TiO(2) and TiO(2)-SWCNT systems under equilibration conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call