Abstract
We have studied the electron-stimulated desorption (ESD) of neutral atomic iodine from single crystals of KI(100) using time-of-flight laser-resonance-enhanced multiphoton ionization spectroscopy and quadrupole mass spectrometry. The measured iodine velocity distributions have thermal and non-thermal components. The yield of the thermal component increases with increasing substrate temperature, whereas the yield of the non-thermal component decreases slightly with temperature. The ESD rate for the thermal component decreases with increasing pulse width, unlike the rate for the non-thermal component, which is independent of pulse width. Measurements of ESD yields versus incident electron energy indicate a threshold of ∼5.5 eV. The data collectively indicate that ESD of KI involves exciton decay at the surface. The temperature and pulse-width dependencies of the thermal component are consistent with decay of bulk self-trapped excitons, thermally assisted H-center diffusion and trapping at metastable defects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.