Abstract

The electron spin resonance (ESR) spectrum of Cr3+ in a synthetic single crystal of forsterite doped with Cr2O3 was studied at room temperature in the X-band frequency range. The dependence of the observed spectra on the crystal orientation with respect to the applied magnetic field was investigated. The ESR spectra are described by the spin Hamiltonian $$H = \beta HgS + D(S_Z^{\text{2}} - {\text{1/3}}S{\text{(}}S{\text{ + 1)) + }}E{\text{(}}S_x^{\text{2}} - S_y^{\text{2}} {\text{)}}$$ with S=3/2. The spin resonance reveals that the chromium ions are located at both the M1 and M2 positions. Other possible substitutional or interstitial Cr3+ positions may be possible, but were not observed. The site occupancy numbers of Cr3+ at M1 and M2 are roughly 1.2×10−4 and 0.8×10−4, respectively, assuming that chromium is oxidized completely. The preference of the chromium ions for M1 was interpreted qualitatively in terms of crystal field criteria. The rhombic and axial spin Hamiltonian parameters, D and E, and the directions of the magnetic axes obtained for M1 and M2 are consistent with the respective oxygen coordination polyhedra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.