Abstract

Clear fused quartz (CFQ) tubes were powdered either manually by using a mortar and pestle (for coarse production) or mechanically, using a micronising mill (for fine production). A high and multisignal electron spin resonance (ESR) background was found in the fine powder even after annealing it at 900°C for 20 min. In the case of the coarse powder, the signal (ESR background) varied inversely with particle size and was quite high for particle sizes lower than 38 μm. In a subsidiary experiment, using fine SiO 2 powder (99.8% pure, with the particle size of ∼0.007 μm), manufactured by using flame hydrolysis, only a weak background signal was found. The 60Co gamma-ray irradiated powders (∼22 Gy) were subjected to ESR analysis or thermoluminescence (TL) readout. The ESR intensity of the coarse powder varied directly with particle size. Thus, the intensity for a particle size of 20–38 μm was very low and almost the same as the unirradiated intensity. In TL readout the results were the opposite: the TL intensity of the coarse powder varied inversely with the particle size down to 38 μm, after which it decreased with decreasing particle size of the material. The fine powder, produced by grinding the CFQ tubes, was insensitive to gamma-rays (at least at doses of up to 50 Gy); but for the flame hydrolysis SiO 2 the situation was the opposite. The minimum detectable dose (MDD) for the CFQ in powder form using ESR was ∼2 Gy, which is ∼2 times higher than that for the bulk form, while the MDD for the powder using TL was ∼20 μGy, which is ∼2 times lower than that for the bulk form of the material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.