Abstract

Low-temperature (4-55 K) pulsed EPR measurements were performed with the magnetic field directed along the z-axis of the g-factor of the low-symmetry octahedral complex [(63)Cu(L-aspartate)(2)(H2O)2] undergoing dynamic Jahn-Teller effect in diaqua(L-aspartate)Zn(II) hydrate single crystals. Spin-lattice relaxation time T(1) and phase memory time T(M) were determined by the electron spin echo (ESE) method. The relaxation rate 1/T(1) increases strongly over 5 decades in the temperature range 4-55 K. Various processes and mechanisms of T(1)-relaxation are discussed, and it is shown that the relaxation is governed mainly by Raman relaxation processes with the Debye temperature Theta(D)=204 K, with a detectable contribution from disorder in the doped Cu(2+) ions system below 12 K. An analytical approximation of the transport integral I(8) is given in temperature range T=0.025-10Theta(D) and applied for computer fitting procedures. Since the Jahn-Teller distorted configurations differ strongly in energy (delta(12)=240 cm(-1)), there is no influence of the classical vibronic dynamics mechanism on T(1). Dephasing of the ESE (phase relaxation) is governed by instantaneous diffusion and spectral diffusion below 20 K with resulting rigid lattice value 1/T(0)(M)=1.88 MHz. Above this temperature the relaxation rate 1/T(M) increases upon heating due to two mechanisms. The first is the phonon-controlled excitation to the first excited vibronic level of energy Delta=243 cm(-1), with subsequent tunneling to the neighbor potential well. This vibronic-type dynamics also produces a temperature-dependent broadening of lines in the ESEEM spectra. The second mechanism is produced by the spin-lattice relaxation. The increase in T(M) is described in terms of the spin packets forming inhomogeneously broadened EPR lines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call