Abstract

The long standing problem of inexplicably short spin relaxation in carbon nanotubes (CNTs) is examined. The curvature-mediated spin-orbital interaction is shown to induce fluctuating electron spin precession causing efficient relaxation in a manner analogous to the Dyakonov-Perel mechanism. Our calculation estimates longitudinal (spin-flip) and transversal (decoherence) relaxation times as short as 150 ps and 110 ps at room temperature, respectively, along with a pronounced anisotropic dependence. Interference of electrons originating from different valleys can lead to even faster dephasing. The results can help clarify the measured data, resolving discrepancies in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.