Abstract
The generation and transfer of electron spin polarization and coherence plays an important role in quantum information technologies and spintronics. In this context, the excited state spin dynamics of molecular systems in which a stable free radical is attached to a chromophore are of particular interest. In such complexes, the coupling between the electron spin on the free radical with those on the chromophore generates excited states referred to as sing-doublet, trip-doublet, and trip-quartet. Here, we study the light-induced electron spin polarization in an aluminum(iii) porphyrin (AlPor) complex in which the nitroxide (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) is covalently bound to the Al center via an ester linkage. In addition to the covalent bond to the TEMPO moiety, the Al center in AlPor also acts as a Lewis acid and can coordinate Lewis bases such as pyridine. Without pyridine bound, the spin polarized transient electron paramagnetic resonance spectrum of the complex at 80 K is unusual and displays a strong absorptive pattern with a Lorentzian lineshape. Coordination of pyridine to AlPor-TEMPO results in a dramatic change in the spin polarization pattern and a spectrum typical of the quartet state with broad wings from the ms = ±1/2 ↔ ±3/2 transitions with emissive/absorptive polarization and a narrow absorptive peak from the ms = ±1/2 ↔ ±1/2 transitions. At later times, the pattern evolves to a purely absorptive spectrum similar to that observed without pyridine. These changes are discussed in terms of a model in which back and forth transitions between the nearly degenerate lowest trip-doublet and trip-quartet states occur. It is argued that these transitions lead to the observed net polarization in AlPor-TEMPO and are fast enough that the outer lines are broadened. Density functional theory computations and the UV/Vis spectra suggest that the exchange interaction between TEMPO and the triplet state of AlPor increases when pyridine is bound, and the near degeneracy of the lowest excited states is lifted. It is argued that this slows the back and forth transitions which results in the strong change in the polarization pattern.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.