Abstract

Electron spin echo envelope modulation (ESEEM) experiments performed on the Rieske Fe-S clusters of the cytochrome b6f complex of spinach chloroplasts and of the cytochrome bc1 complexes of Rhodospirillum rubrum, Rhodobacter sphaeroides R-26, and bovine heart mitochondria show modulation components resulting from two distinct classes of 14N ligands. At the g = 1.92 region of the Rieske EPR spectrum of the cytochrome b6f complex, the measured hyperfine couplings for the two classes of coupled nitrogens are A1 = 4.6 MHz and A2 = 3.8 MHz. Similar couplings are observed for the Rieske centers in the three cytochrome bc1 complexes. These ESEEM results indicate a nitrogen coordination environment for these Rieske Fe-S centers that is similar to that of the Fe-S cluster of a bacterial dioxygenase enzyme with two coordinated histidine ligands [Gurbiel, R. J., Batie, C. J., Sivaraja, M., True, A. E., Fee, J. A., Hoffman, B. M., & Ballou, D. P. (1989) Biochemistry 28, 4861-4871]. The Rieske Fe-S cluster lacks modulation components from a weakly coupled peptide nitrogen observed in water-soluble spinach ferredoxin. Treatment with the quinone analogue inhibitor DBMIB causes a shift in the Rieske EPR spectrum to g = 1.95 with no alteration in the magnetic coupling to the two nitrogen atoms. However, the ESEEM pattern of the DBMIB-altered Rieske EPR signal shows evidence of an additional weakly coupled nitrogen similar to that observed in the spinach ferredoxin ESEEM patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.