Abstract

In this paper, an analytical expression of the electron spin-dependent tunneling current through a potential barrier by applying a bias voltage was investigated. An Airy wavefunction was applied to derive the transmittance through the barrier by considering a zinc-blende material, which depends on the spin states indicated as ‘up’ and ‘down’. The obtained transmittance was employed to compute the polarization and spin-dependent tunneling current. The spin-dependent tunneling current was then observed at various bias voltages and temperatures. It was shown that the spin-polarized current increases as the bias voltage increases. It was also shown that the increase of temperature enhances the spin-dependent tunneling current.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call