Abstract

Few-electron systems confined in a quantum dot laterally coupled to a surrounding quantum ring in the presence of an external magnetic field are studied by exact diagonalization. The distribution of electrons between the dot and the ring is influenced by the relative strength of the dot and ring confinement, the gate voltage and the magnetic field which induces transitions of electrons between the two parts of the system. These transitions are accompanied by changes in the periodicity of the Aharonov-Bohm oscillations of the ground-state angular momentum. The singlet-triplet splitting for a two electron system with one electron confined in the dot and the other in the ring exhibits piecewise linear dependence on the external field due to the Aharonov-Bohm effect for the ring-confined electron, in contrast to smooth oscillatory dependence of the exchange energy for laterally coupled dots in the side-by-side geometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call