Abstract

Electron spectra and wave functions of icosahedral quasicrystals have been investigated in the tight-binding approximation using the two-fragment structural model (the Amman-MacKay network) with “central” decoration. A quasicrystal has been considered as a limiting structure in a set of optimal cubic approximants with increasing lattice constants. The method of level statistics indicates that the energy spectrum of an icosahedral quasicrystal contains a singular (nonsmooth) component. The density of electron states has been calculated for the first four optimal cubic approximants of the icosahedral quasicrystal, and the respective Lebesgue measures of energy spectra of these approximants have been obtained. Unlike the case of a one-dimensional quasiperiodic structure, the energy spectrum of an icosahedral quasicrystal does not contain a hierarchical gap structure typical of the Cantor set of measure zero in a one-dimensional quasicrystal. Localization of wave functions in an icosahedral quasicrystal has been studied, and their “critical” behavior has been detected. The effect of disorder due to substitutional impurities on electron properties of icosahedral quasicrystals has been investigated. This disorder makes the electron spectrum “smoother” and leads to a tendency to localization of wave functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.